Extended Poia Theory Simulation Framework

Extended Poia Theory Simulation Framework


The simulation allows you to:
  1. Test the core hypotheses of the Poia Theory across multiple domains
  2. Explore parameter sensitivities to optimize experimental designs
  3. Generate synthetic datasets that can guide statistical analysis approaches
  4. Visualize complex relationships between consciousness, quantum effects, and field interactions
"""
Comprehensive Poia Theory Simulation Framework

This program simulates the key experiments proposed to test the Poia Theory:
1. Neural-Quantum Correlation Experiment
2. Inter-Subject Neural Synchronization Experiment
3. Consciousness State Transitions and Field Effects

The simulation implements detailed models of neural dynamics, quantum systems,
and field interactions based on the mathematical formulations of the Poia Theory.
"""

import numpy as np
import matplotlib.pyplot as plt
from scipy import signal, stats
import pandas as pd
from sklearn.metrics import mutual_info_score
from tqdm import tqdm
import seaborn as sns
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation
import networkx as nx
from scipy.integrate import solve_ivp
import warnings
warnings.filterwarnings('ignore')

class PoiaSimulation:
    def __init__(self, params=None):
        """Initialize the comprehensive simulation framework."""
        # Default parameters
        self.params = {
            # General parameters
            'random_seed': 42,          # Random seed for reproducibility
            'verbose': True,            # Print detailed information
            
            # Neural parameters
            'n_channels': 64,           # Number of EEG channels
            'fs': 500,                  # Sampling frequency (Hz)
            'trial_duration': 15,       # Trial duration in seconds
            'n_trials': 200,            # Number of trials per condition
            'n_subjects': 24,           # Number of subjects
            
            # Brain regions and connectivity
            'n_regions': 10,            # Number of brain regions
            'region_names': ['PFC', 'ACC', 'DLPFC', 'OFC', 'VC', 'TC', 'PC', 'HC', 'BG', 'TH'],
            'connectivity_density': 0.3, # Density of connectivity matrix
            
            # Coherence parameters
            'phi_critical': 0.27,       # Critical integrated information threshold
            'phi_std': 0.04,            # Standard deviation of phi across subjects
            'alpha_band': [8, 12],      # Alpha frequency band (Hz)
            'theta_band': [4, 7],       # Theta frequency band (Hz)
            'gamma_band': [30, 45],     # Gamma frequency band (Hz)
            
            # Quantum parameters
            'lambda_0': 1e-6,           # Base coupling parameter
            'alpha': 1.5,               # Scaling exponent for lambda(Phi)
            'qrng_bias': 0.5,           # Baseline QRNG bias (0.5 = unbiased)
            'amplification': 1e3,       # Amplification factor for quantum effects
            'quantum_coherence_time': 1e-6, # Quantum coherence time (s)
            
            # Field coupling parameters
            'k_alpha': 0.18,            # Alpha band coupling constant
            'k_theta': 0.12,            # Theta band coupling constant
            'k_gamma': 0.05,            # Gamma band coupling constant
            'distance_decay': 2.0,      # Exponent for distance decay (inverse square = 2.0)
            'field_propagation_speed': 3e8, # Field propagation speed (m/s) - speed of light
            
            # Inter-subject parameters
            'distance_levels': [0.5, 2.0, 5.0, 10.0, 20.0], # Distance between subjects (m)
            'baseline_psi': 0.05,       # Baseline phase synchronization index
            
            # Experimental conditions
            'conditions': ['rest', 'focused', 'open', 'cognitive', 'control'],
            'condition_phi_mod': {      # Phi modification by condition
                'rest': 1.0,            # Baseline
                'focused': 1.2,         # Increased in focused attention
                'open': 1.1,            # Slightly increased in open monitoring
                'cognitive': 0.9,       # Decreased during cognitive load
                'control': 0.0,         # No effect in control condition
            },
            
            # Noise parameters
            'neural_noise': 0.2,        # Neural measurement noise level
            'quantum_noise': 0.01,      # Quantum measurement noise level
            'em_noise': 0.05,           # Environmental EM noise level
            
            # Syntropy parameters
            'eta_critical': 0.2,        # Critical efficiency parameter
            'system_size_scaling': 0.5, # Scaling exponent for system size (alpha)
            'coupling_scaling': 0.8,    # Scaling exponent for coupling strength (beta)
        }
        
        # Update with custom parameters if provided
        if params:
            self.params.update(params)
        
        # Set random seed
        np.random.seed(self.params['random_seed'])
        
        # Initialize data structures
        self.subjects = self._initialize_subjects()
        self.brain_connectivity = self._initialize_brain_connectivity()
        self.results = {
            'neural_quantum': {},
            'inter_subject': {},
            'consciousness_states': {},
            'syntropy': {}
        }
    
    def _initialize_subjects(self):
        """Initialize subject parameters with individual variations."""
        subjects = []
        for i in range(self.params['n_subjects']):
            # Generate subject-specific parameters with natural variation
            phi_base = np.random.normal(
                self.params['phi_critical'], 
                self.params['phi_std']
            )
            
            # Ensure phi_base is positive
            phi_base = max(0.1, phi_base)
            
            # Add individual frequency peaks with variation
            alpha_peak = np.random.normal(10, 0.5)  # Center of alpha band
            theta_peak = np.random.normal(5.5, 0.4)  # Center of theta band
            gamma_peak = np.random.normal(38, 2.0)   # Center of gamma band
            
            # Regional permittivity and conductivity variations
            region_permittivity = {}
            region_conductivity = {}
            
            for region in self.params['region_names']:
                # Base values with individual variation
                if region in ['PFC', 'DLPFC', 'OFC']:
                    # Prefrontal regions
                    perm_factor = np.random.normal(1.15, 0.12)
                    cond_factor = np.random.normal(0.92, 0.11)
                elif region in ['VC']:
                    # Visual cortex
                    perm_factor = np.random.normal(0.88, 0.09)
                    cond_factor = np.random.normal(1.06, 0.13)
                elif region in ['HC']:
                    # Hippocampus
                    perm_factor = np.random.normal(1.32, 0.15)
                    cond_factor = np.random.normal(0.95, 0.12)
                else:
                    # Other regions
                    perm_factor = np.random.normal(1.0, 0.1)
                    cond_factor = np.random.normal(1.0, 0.1)
                
                region_permittivity[region] = perm_factor
                region_conductivity[region] = cond_factor
            
            subject = {
                'id': i,
                'phi_base': phi_base,
                'alpha_peak': alpha_peak,
                'theta_peak': theta_peak,
                'gamma_peak': gamma_peak,
                'neural_noise_factor': np.random.uniform(0.8, 1.2),
                'quantum_susceptibility': np.random.uniform(0.7, 1.3),
                'region_permittivity': region_permittivity,
                'region_conductivity': region_conductivity,
                'consciousness_state': 'awake',  # Initial state
                'eta': np.random.normal(0.6, 0.1)  # Syntropy efficiency parameter
            }
            subjects.append(subject)
        return subjects
    
    def _initialize_brain_connectivity(self):
        """Initialize brain connectivity matrix between regions."""
        n_regions = self.params['n_regions']
        density = self.params['connectivity_density']
        
        # Create a random connectivity matrix with specified density
        connectivity = np.random.rand(n_regions, n_regions)
        threshold = np.percentile(connectivity, 100 * (1 - density))
        connectivity[connectivity < threshold] = 0
        
        # Make it symmetric (undirected graph)
        connectivity = np.maximum(connectivity, connectivity.T)
        
        # Set diagonal to zero (no self-connections)
        np.fill_diagonal(connectivity, 0)
        
        # Normalize
        if np.max(connectivity) > 0:
            connectivity = connectivity / np.max(connectivity)
        
        return connectivity
    
    def _generate_neural_oscillations(self, duration, condition, subject):
        """Generate simulated EEG data with realistic oscillations."""
        fs = self.params['fs']
        n_samples = int(duration * fs)
        n_channels = self.params['n_channels']
        n_regions = self.params['n_regions']
        
        # Time vector
        t = np.arange(n_samples) / fs
        
        # Base oscillations (pink noise as background)
        eeg_data = np.zeros((n_channels, n_samples))
        for ch in range(n_channels):
            # Generate pink noise (1/f)
            pink_noise = self._generate_pink_noise(n_samples)
            eeg_data[ch, :] = pink_noise
        
        # Add oscillatory components with condition-specific modulation
        condition_mod = self.params['condition_phi_mod'][condition]
        
        # Skip oscillations for control condition
        if condition != 'control':
            # Alpha oscillations
            alpha_amp = 1.0 * condition_mod
            if condition == 'focused':
                alpha_amp *= 1.3  # Enhanced alpha in focused attention
            
            alpha_freq = subject['alpha_peak']
            alpha_phase = np.random.uniform(0, 2*np.pi)
            alpha_osc = alpha_amp * np.sin(2 * np.pi * alpha_freq * t + alpha_phase)
            
            # Theta oscillations
            theta_amp = 0.7 * condition_mod
            if condition == 'open':
                theta_amp *= 1.4  # Enhanced theta in open monitoring
            
            theta_freq = subject['theta_peak']
            theta_phase = np.random.uniform(0, 2*np.pi)
            theta_osc = theta_amp * np.sin(2 * np.pi * theta_freq * t + theta_phase)
            
            # Gamma oscillations
            gamma_amp = 0.4 * condition_mod
            if condition == 'cognitive':
                gamma_amp *= 1.5  # Enhanced gamma in cognitive tasks
            
            gamma_freq = subject['gamma_peak']
            gamma_phase = np.random.uniform(0, 2*np.pi)
            gamma_osc = gamma_amp * np.sin(2 * np.pi * gamma_freq * t + gamma_phase)
            
            # Generate region-specific activity
            region_activity = np.zeros((n_regions, n_samples))
            
            for r in range(n_regions):
                # Base oscillations for this region
                region_name = self.params['region_names'][r]
                
                # Region-specific frequency modulation
                if region_name in ['PFC', 'ACC', 'DLPFC']:
                    # Frontal regions - enhanced theta
                    r_theta = theta_osc * 1.2
                    r_alpha = alpha_osc * 0.8
                    r_gamma = gamma_osc * 0.9
                elif region_name in ['VC', 'TC']:
                    # Sensory regions - enhanced alpha
                    r_theta = theta_osc * 0.7
                    r_alpha = alpha_osc * 1.3
                    r_gamma = gamma_osc * 1.1
                elif region_name in ['HC']:
                    # Hippocampus - enhanced theta
                    r_theta = theta_osc * 1.4
                    r_alpha = alpha_osc * 0.6
                    r_gamma = gamma_osc * 0.8
                else:
                    # Other regions - balanced
                    r_theta = theta_osc
                    r_alpha = alpha_osc
                    r_gamma = gamma_osc
                
                # Combine oscillations
                region_activity[r, :] = r_theta + r_alpha + r_gamma
                
                # Add region-specific noise
                noise_level = 0.1 * self.params['neural_noise']
                region_activity[r, :] += noise_level * np.random.randn(n_samples)
            
            # Propagate activity between regions based on connectivity
            propagated_activity = np.zeros_like(region_activity)
            
            for r1 in range(n_regions):
                for r2 in range(n_regions):
                    if self.brain_connectivity[r1, r2] > 0:
                        # Add weighted contribution from connected regions
                        # With random delay based on connection strength
                        delay_samples = int(fs * 0.01 * (1 - self.brain_connectivity[r1, r2]))
                        if delay_samples > 0 and delay_samples < n_samples:
                            propagated_activity[r1, :-delay_samples] += (
                                self.brain_connectivity[r1, r2] * 
                                region_activity[r2, delay_samples:]
                            )
            
            # Combine original and propagated activity
            region_activity = 0.6 * region_activity + 0.4 * propagated_activity
            
            # Map region activity to EEG channels
            # Each channel gets weighted contribution from regions
            for ch in range(n_channels):
                for r in range(n_regions):
                    # Simple spatial mapping - different channels get different weights from regions
                    # In a real implementation, this would use a head model and lead field matrix
                    weight = np.exp(-(ch/n_channels - r/n_regions)**2 / 0.1)
                    eeg_data[ch, :] += 0.5 * weight * region_activity[r, :]
        
        # Add measurement noise
        noise_level = self.params['neural_noise'] * subject['neural_noise_factor']
        noise = noise_level * np.random.randn(n_channels, n_samples)
        eeg_data += noise
        
        return eeg_data, region_activity
    
    def _generate_pink_noise(self, n_samples):
        """Generate pink noise (1/f spectrum)."""
        white_noise = np.random.randn(n_samples)
        
        # Create pink noise by filtering white noise
        b, a = signal.butter(1, 0.9, 'low')
        pink_noise = signal.lfilter(b, a, white_noise)
        
        # Normalize
        pink_noise = pink_noise / np.std(pink_noise)
        
        return pink_noise
    
    def _calculate_neural_coherence(self, eeg_data, band):
        """Calculate neural coherence in specified frequency band."""
        fs = self.params['fs']
        n_channels = self.params['n_channels']
        
        # Apply bandpass filter
        low, high = band
        b, a = signal.butter(3, [low/(fs/2), high/(fs/2)], 'bandpass')
        filtered_data = np.zeros_like(eeg_data)
        
        for ch in range(n_channels):
            filtered_data[ch, :] = signal.filtfilt(b, a, eeg_data[ch, :])
        
        # Calculate Hilbert transform to get analytic signal
        analytic_signal = signal.hilbert(filtered_data)
        phase = np.angle(analytic_signal)
        amplitude = np.abs(analytic_signal)
        
        # Calculate phase synchronization index (PSI) across channels
        n_pairs = 0
        psi_sum = 0
        
        for i in range(n_channels):
            for j in range(i+1, n_channels):
                phase_diff = phase[i, :] - phase[j, :]
                psi = np.abs(np.mean(np.exp(1j * phase_diff)))
                psi_sum += psi
                n_pairs += 1
        
        # Average PSI across all channel pairs
        mean_psi = psi_sum / n_pairs if n_pairs > 0 else 0
        
        # Also calculate power in this band
        power = np.mean(amplitude**2)
        
        return mean_psi, power
    
    def _calculate_phi(self, eeg_data, region_activity, subject, condition):
        """Calculate integrated information (Phi) from neural data."""
        # Calculate coherence in different frequency bands
        alpha_coherence, alpha_power = self._calculate_neural_coherence(eeg_data, self.params['alpha_band'])
        theta_coherence, theta_power = self._calculate_neural_coherence(eeg_data, self.params['theta_band'])
        gamma_coherence, gamma_power = self._calculate_neural_coherence(eeg_data, self.params['gamma_band'])
        
        # Calculate effective connectivity between regions
        n_regions = self.params['n_regions']
        effective_conn = np.zeros((n_regions, n_regions))
        
        for i in range(n_regions):
            for j in range(n_regions):
                if i != j:
                    # Calculate Granger-like causality (simplified)
                    # In a real implementation, this would use proper Granger causality or transfer entropy
                    corr = np.corrcoef(region_activity[i, 1:], region_activity[j, :-1])[0, 1]
                    effective_conn[i, j] = max(0, corr)
        
        # Calculate integration (I) - simplified measure based on connectivity
        integration = np.mean(effective_conn)
        
        # Calculate differentiation (D) - based on spectral diversity
        band_powers = [alpha_power, theta_power, gamma_power]
        differentiation = np.std(band_powers) / np.mean(band_powers)
        
        # Calculate Phi as a combination of integration and differentiation
        phi_raw = integration * differentiation
        
        # Apply subject-specific baseline and condition modifier
        condition_mod = self.params['condition_phi_mod'][condition]
        phi = subject['phi_base'] * condition_mod * phi_raw
        
        # Add some random variation
        phi = max(0, phi + np.random.normal(0, 0.05))
        
        # Additional metrics for comprehensive Phi calculation
        metrics = {
            'alpha_coherence': alpha_coherence,
            'theta_coherence': theta_coherence,
            'gamma_coherence': gamma_coherence,
            'integration': integration,
            'differentiation': differentiation,
            'phi_raw': phi_raw,
            'phi': phi
        }
        
        return phi, metrics
    
    def _calculate_lambda(self, phi):
        """Calculate lambda(Phi) scaling function."""
        phi_critical = self.params['phi_critical']
        
        # If phi is below critical threshold, lambda is zero
        if phi < phi_critical:
            return 0
        
        # Otherwise, calculate lambda based on scaling function
        lambda_0 = self.params['lambda_0']
        alpha = self.params['alpha']
        
        lambda_phi = lambda_0 * ((phi - phi_critical) ** alpha)
        
        return lambda_phi
    
    def _simulate_quantum_system(self, duration, phi, subject):
        """Simulate quantum system with potential influence from phi."""
        fs = self.params['fs']
        n_samples = int(duration * fs)
        
        # Calculate lambda based on phi
        lambda_phi = self._calculate_lambda(phi)
        
        # Apply subject-specific quantum susceptibility
        lambda_phi *= subject['quantum_susceptibility']
        
        # Apply amplification factor
        effect_size = lambda_phi * self.params['amplification']
        
        # Base probability (0.5 for unbiased)
        p = self.params['qrng_bias']
        
        # Time vector
        t = np.arange(n_samples) / fs
        
        # Simulate quantum coherence time effects
        coherence_time = self.params['quantum_coherence_time']
        n_coherence_periods = int(np.ceil(duration / coherence_time))
        
        # Generate quantum random numbers with potential phi influence
        qrng_output = np.zeros(n_samples)
        
        for i in range(n_coherence_periods):
            start_idx = int(i * coherence_time * fs)
            end_idx = min(int((i + 1) * coherence_time * fs), n_samples)
            
            if end_idx <= start_idx:
                continue
                
            # Modified probability based on phi
            p_mod = p + effect_size
            
            # Ensure probability is valid
            p_mod = max(0, min(1, p_mod))
            
            # Generate binary outcome for this coherence period
            outcome = np.random.binomial(1, p_mod)
            qrng_output[start_idx:end_idx] = outcome
        
        # Add measurement noise
        noise = self.params['quantum_noise'] * np.random.randn(n_samples)
        qrng_output_noisy = qrng_output + noise
        
        # Calculate bias
        bias = np.mean(qrng_output)
        
        return qrng_output_noisy, bias
    
    def _calculate_field_coupling(self, subject1, subject2, distance, band):
        """Calculate field coupling strength between two subjects at given distance."""
        # Get band-specific coupling constant
        if band == 'alpha':
            k_band = self.params['k_alpha']
        elif band == 'theta':
            k_band = self.params['k_theta']
        elif band == 'gamma':
            k_band = self.params['k_gamma']
        else:
            k_band = 0.1  # Default
        
        # Calculate distance decay
        distance_decay = self.params['distance_decay']
        distance_factor = distance ** (-distance_decay)
        
        # Calculate coupling strength
        coupling = k_band * distance_factor
        
        # Adjust for subject-specific factors
        # Average permittivity and conductivity across regions
        perm1 = np.mean(list(subject1['region_permittivity'].values()))
        perm2 = np.mean(list(subject2['region_permittivity'].values()))
        cond1 = np.mean(list(subject1['region_conductivity'].values()))
        cond2 = np.mean(list(subject2['region_conductivity'].values()))
        
        # Coupling depends on permittivity and inversely on conductivity
        subject_factor = np.sqrt((perm1 * perm2) / (cond1 * cond2))
        
        coupling *= subject_factor
        
        return coupling
    
    def _simulate_inter_subject_synchronization(self, subject1_idx, subject2_idx, distance, condition):
        """Simulate neural synchronization between two subjects at specified distance."""
        subject1 = self.subjects[subject1_idx]
        subject2 = self.subjects[subject2_idx]
        duration = self.params['trial_duration']
        
        # Generate independent neural activity for each subject
        eeg_data1, region_activity1 = self._generate_neural_oscillations(duration, condition, subject1)
        eeg_data2, region_activity2 = self._generate_neural_oscillations(duration, condition, subject2)
        
        # Calculate Phi for each subject
        phi1, metrics1 = self._calculate_phi(eeg_data1, region_activity1, subject1, condition)
        phi2, metrics2 = self._calculate_phi(eeg_data2, region_activity2, subject2, condition)
        
        # Calculate field coupling for different frequency bands
        alpha_coupling = self._calculate_field_coupling(subject1, subject2, distance, 'alpha')
        theta_coupling = self._calculate_field_coupling(subject1, subject2, distance, 'theta')
        gamma_coupling = self._calculate_field_coupling(subject1, subject2, distance, 'gamma')
        
        # Calculate expected synchronization based on coupling and Phi similarity
        phi_similarity = np.exp(-abs(phi1 - phi2) / 0.3)  # Similarity decreases with Phi difference
        
        # Baseline synchronization (chance level)
        baseline_psi = self.params['baseline_psi']
        
        # Calculate expected PSI for each band
        alpha_psi_expected = baseline_psi + alpha_coupling * phi_similarity
        theta_psi_expected = baseline_psi + theta_coupling * phi_similarity
        gamma_psi_expected = baseline_psi + gamma_coupling * phi_similarity
        
        # Add noise to synchronization
        alpha_psi = max(0, min(1, alpha_psi_expected + np.random.normal(0, 0.02)))
        theta_psi = max(0, min(1, theta_psi_expected + np.random.normal(0, 0.02)))
        gamma_psi = max(0, min(1, gamma_psi_expected + np.random.normal(0, 0.02)))
        
        # Calculate information transfer between subjects
        # In a real implementation, this would use transfer entropy or similar measures
        # Here we use a simplified model based on synchronization and Phi
        transfer_efficiency = 0.05 * (alpha_psi + theta_psi + gamma_psi) * np.sqrt(phi1 * phi2)
        
        # Add noise to transfer efficiency
        transfer_efficiency = max(0, transfer_efficiency + np.random.normal(0, 0.01))
        
        return {
            'subject1': subject1_idx,
            'subject2': subject2_idxdata, ax=ax2)
        ax2.set_title('Phase Synchronization by Condition')
        ax2.set_ylabel('PSI')
        
        # 3. Plot transfer efficiency vs Phi similarity
        ax3 = fig.add_subplot(2, 2, 3)
        sns.scatterplot(x='phi_similarity', y='transfer_efficiency', hue='distance', data=df, ax=ax3)
        ax3.set_title('Information Transfer vs Phi Similarity')
        ax3.set_xlabel('Phi Similarity')
        ax3.set_ylabel('Transfer Efficiency')
        
        # 4. Plot distance scaling
        ax4 = fig.add_subplot(2, 2, 4)
        
        # Get scaling results
        scaling = self.results['inter_subject']['distance_scaling']
        
        # Plot theoretical inverse square law
        x = np.logspace(np.log10(min(distances)), np.log10(max(distances)), 100)
        y_inverse_square = 0.1 * x**(-2) + self.params['baseline_psi']
        
        # Plot measured scaling
        y_alpha = np.exp(scaling['alpha_intercept']) * x**(scaling['alpha_exponent']) + self.params['baseline_psi']
        y_theta = np.exp(scaling['theta_intercept']) * x**(scaling['theta_exponent']) + self.params['baseline_psi']
        y_gamma = np.exp(scaling['gamma_intercept']) * x**(scaling['gamma_exponent']) + self.params['baseline_psi']
        
        ax4.plot(x, y_inverse_square, 'k--', label=f'Inverse Square Law (r^-2)')
        ax4.plot(x, y_alpha, '-', label=f'Alpha (r^{scaling["alpha_exponent"]:.2f})')
        ax4.plot(x, y_theta, '-', label=f'Theta (r^{scaling["theta_exponent"]:.2f})')
        ax4.plot(x, y_gamma, '-', label=f'Gamma (r^{scaling["gamma_exponent"]:.2f})')
        
        ax4.set_xscale('log')
        ax4.set_yscale('log')
        ax4.set_title('Distance Scaling of Synchronization')
        ax4.set_xlabel('Distance (m)')
        ax4.set_ylabel('PSI - Baseline')
        ax4.legend()
        
        plt.tight_layout()
        
        return fig
    
    def plot_consciousness_transitions(self):
        """Plot consciousness state transition results."""
        if 'transitions' not in self.results['consciousness_states']:
            print("No consciousness transition results to plot. Run the experiment first.")
            return None
        
        transitions = self.results['consciousness_states']['transitions']
        
        # Select a few transitions to plot
        if len(transitions) > 3:
            plot_transitions = [transitions[0], transitions[3], transitions[5]]
        else:
            plot_transitions = transitions
        
        # Set up the figure
        fig = plt.figure(figsize=(15, 12))
        
        for i, transition in enumerate(plot_transitions):
            # Extract data
            time = transition['time']
            phi = transition['phi_trajectory']
            p_conscious = transition['p_conscious']
            alpha_power = transition['alpha_power_trajectory']
            theta_power = transition['theta_power_trajectory']
            gamma_power = transition['gamma_power_trajectory']
            
            # Plot Phi and consciousness probability
            ax1 = fig.add_subplot(3, 3, i*3 + 1)
            ax1.plot(time, phi, 'b-', label='Phi')
            ax1.set_ylabel('Phi')
            ax1.set_xlabel('Time (s)')
            
            ax1_twin = ax1.twinx()
            ax1_twin.plot(time, p_conscious, 'r--', label='P(Conscious)')
            ax1_twin.set_ylabel('P(Conscious)')
            ax1_twin.set_ylim(0, 1)
            
            # Add horizontal line at Phi_critical
            ax1.axhline(y=self.params['phi_critical'], color='k', linestyle=':', alpha=0.5)
            
            # Add title
            ax1.set_title(f"Subject {transition['subject']}: {transition['initial_state']} → {transition['target_state']}")
            
            # Combine legends
            lines1, labels1 = ax1.get_legend_handles_labels()
            lines2, labels2 = ax1_twin.get_legend_handles_labels()
            ax1.legend(lines1 + lines2, labels1 + labels2, loc='upper right')
            
            # Plot power in different frequency bands
            ax2 = fig.add_subplot(3, 3, i*3 + 2)
            ax2.plot(time, alpha_power, 'g-', label='Alpha')
            ax2.plot(time, theta_power, 'm-', label='Theta')
            ax2.plot(time, gamma_power, 'c-', label='Gamma')
            ax2.set_ylabel('Relative Power')
            ax2.set_xlabel('Time (s)')
            ax2.legend()
            ax2.set_title('Frequency Band Power')
            
            # Plot 3D trajectory
            ax3 = fig.add_subplot(3, 3, i*3 + 3, projection='3d')
            ax3.plot(alpha_power, theta_power, gamma_power, 'k-')
            ax3.scatter(alpha_power[0], theta_power[0], gamma_power[0], c='g', s=50, label='Start')
            ax3.scatter(alpha_power[-1], theta_power[-1], gamma_power[-1], c='r', s=50, label='End')
            
            # Add color gradient based on time
            points = ax3.scatter(
                alpha_power, theta_power, gamma_power, 
                c=time, cmap='viridis', 
                s=10, alpha=0.5
            )
            
            ax3.set_xlabel('Alpha Power')
            ax3.set_ylabel('Theta Power')
            ax3.set_zlabel('Gamma Power')
            ax3.set_title('State Space Trajectory')
            ax3.legend()
            
            # Add colorbar
            cbar = plt.colorbar(points, ax=ax3, pad=0.1)
            cbar.set_label('Time (s)')
        
        plt.tight_layout()
        
        # Create a second figure for transition point analysis
        if 'transition_points' in self.results['consciousness_states']:
            tp_df = self.results['consciousness_states']['transition_points']
            
            fig2 = plt.figure(figsize=(12, 6))
            
            # Plot Phi at transition points
            ax_tp = fig2.add_subplot(1, 1, 1)
            sns.boxplot(x='transition', y='phi', data=tp_df, ax=ax_tp)
            ax_tp.set_title('Phi at Consciousness Transition Points')
            ax_tp.set_xlabel('Transition')
            ax_tp.set_ylabel('Phi')
            
            # Add horizontal line at mean transition Phi
            if 'mean_transition_phi' in self.results['consciousness_states']:
                mean_phi = self.results['consciousness_states']['mean_transition_phi']
                ax_tp.axhline(y=mean_phi, color='r', linestyle='--', alpha=0.7)
                
                # Add text annotation
                ax_tp.text(
                    0.02, 0.95, f'Mean Transition Phi: {mean_phi:.3f}',
                    transform=ax_tp.transAxes, fontsize=12,
                    verticalalignment='top', bbox=dict(boxstyle='round', facecolor='white', alpha=0.7)
                )
            
            # Add horizontal line at Phi_critical
            ax_tp.axhline(y=self.params['phi_critical'], color='k', linestyle=':', alpha=0.5)
            ax_tp.text(
                0.02, 0.85, f'Phi Critical: {self.params["phi_critical"]:.3f}',
                transform=ax_tp.transAxes, fontsize=12,
                verticalalignment='top', bbox=dict(boxstyle='round', facecolor='white', alpha=0.7)
            )
            
            plt.xticks(rotation=45, ha='right')
            plt.tight_layout()
            
            return fig, fig2
        
        return fig
    
    def plot_syntropy_results(self):
        """Plot syntropy analysis results."""
        if 'raw_data' not in self.results['syntropy']:
            print("No syntropy results to plot. Run the analysis first.")
            return None
        
        df = self.results['syntropy']['raw_data']
        
        # Set up the figure
        fig = plt.figure(figsize=(15, 12))
        
        # 1. Plot syntropic vs non-syntropic systems
        ax1 = fig.add_subplot(2, 2, 1)
        
        # Create a 2D histogram of system size vs coupling strength, colored by syntropic behavior
        syntropic_df = df[df['is_syntropic']]
        non_syntropic_df = df[~df['is_syntropic']]
        
        ax1.scatter(
            non_syntropic_df['system_size'], 
            non_syntropic_df['coupling_strength'],
            c='blue', alpha=0.5, label='Non-Syntropic'
        )
        ax1.scatter(
            syntropic_df['system_size'], 
            syntropic_df['coupling_strength'],
            c='red', alpha=0.5, label='Syntropic'
        )
        
        ax1.set_xscale('log')
        ax1.set_yscale('log')
        ax1.set_xlabel('System Size (N)')
        ax1.set_ylabel('Coupling Strength (J)')
        ax1.set_title('Syntropic vs Non-Syntropic Systems')
        ax1.legend()
        
        # 2. Plot critical efficiency threshold
        ax2 = fig.add_subplot(2, 2, 2)
        
        # Create a 3D scatter plot
        scatter = ax2.scatter(
            df['system_size'], 
            df['coupling_strength'], 
            df['eta_critical'],
            c=df['is_syntropic'], cmap='coolwarm', alpha=0.7
        )
        
        ax2.set_xscale('log')
        ax2.set_yscale('log')
        ax2.set_xlabel('System Size (N)')
        ax2.set_ylabel('Coupling Strength (J)')
        ax2.set_title('Critical Efficiency Threshold')
        
        # Add colorbar
        cbar = plt.colorbar(scatter, ax=ax2)
        cbar.set_label('Syntropic (1) vs Non-Syntropic (0)')
        
        # 3. Plot scaling law verification
        ax3 = fig.add_subplot(2, 2, 3)
        
        # Get scaling law results
        scaling = self.results['syntropy']['scaling_law']
        
        # Create predicted vs actual plot
        log_size = np.log(df['system_size'])
        log_coupling = np.log(df['coupling_strength'])
        log_eta_actual = np.log(df['eta_critical'])
        
        # Predicted values from scaling law
        log_eta_pred = scaling['intercept'] + scaling['size_exponent'] * log_size + scaling['coupling_exponent'] * log_coupling
        
        ax3.scatter(log_eta_actual, log_eta_pred, alpha=0.5)
        
        # Add diagonal line
        min_val = min(log_eta_actual.min(), log_eta_pred.min())
        max_val = max(log_eta_actual.max(), log_eta_pred.max())
        ax3.plot([min_val, max_val], [min_val, max_val], 'k--')
        
        ax3.set_xlabel('Actual log(η_critical)')
        ax3.set_ylabel('Predicted log(η_critical)')
        ax3.set_title('Scaling Law Verification')
        
        # Add text with scaling exponents
        ax3.text(
            0.05, 0.95, 
            f"Size exponent: {scaling['size_exponent']:.3f} (expected: {scaling['expected_size_exponent']:.3f})\n"
            f"Coupling exponent: {scaling['coupling_exponent']:.3f} (expected: {scaling['expected_coupling_exponent']:.3f})",
            transform=ax3.transAxes, fontsize=10,
            verticalalignment='top', bbox=dict(boxstyle='round', facecolor='white', alpha=0.7)
        )
        
        # 4. Plot efficiency vs energy input
        ax4 = fig.